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Abstract 
 
A new scheme, the modified direct simulation Monte-Carlo (MDSMC), for the numerical simulation of the Boltzmann equation for 

rarefied gas flow about a sphere is developed. The Taylor series expansion is used to obtain the modified equation of the first-order time 
discretization of the collision equation and the new scheme, MDSMC, is implemented to simulate the collision equation in the Boltz-
mann equation. In the new scheme (MDSMC) there exists a new extra term which takes into account the effect of the second-order colli-
sion. In the new scheme (MDSMC) there also exists a second-order term in time step in the probabilistic coefficients which has the effect 
of simulation with higher accuracy than the previous DSMC scheme. The results of the drag coefficient of the sphere using the MDSMC 
scheme show better agreement in comparison with the experimental data of Wegener (1961) than the results of the drag coefficient of the 
sphere using the DSMC scheme.  
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1. Introduction  

In gas flow problems where the length scale of the system is 
comparable to the mean free path for molecules in the gas 
flow, the concept of the continuum is no more valid, Knudsen 
number greater than 0.1, (Bird, 1994). In this case, the simula-
tion is done using the collisional Boltzmann equation (CBE) 
methods. In most cases, the direct solution of the CBE is im-
practicable due to the huge number of molecules; however, 
most of the time the implementation of the DSMC is more 
practicable. The Boltzmann equation was derived by Ludwig 
Eduard Boltzmann in 1872, and the limited conditions was 
studied by Cercignani (1969). So far the rarefied gas flow 
problems about a blunt body are simulated using the DSMC 
scheme by Vogenitz, et al. (1968), Bird (1994), Garcia, et 
al.(1997), Crifo, et al. (2002), Chen, et al.(2003), Wu, et 
al.(2003), Volkov, et al. (2005) and Nourazar, et al. (2005). 
The DSMC scheme is used in the flow simulation of the pre-
vious researchers and the results of the simulations show some 
discrepancies when compared with the experimental data. 

The external rarefied gas flow about the blunt body is simu-
lated. Vogenitz, et al. (1968) studied the theoretical and ex-
perimental aspects of the rarefied supersonic flow about sev-

eral simple shapes (sphere, cylinder, cone and wedge). Their 
results of simulation show less discrepancy at high Knudsen 
number than low Knudsen number when compared with 
measurements. The results of the external gas flow using 
DSMC scheme are presented in Bird’s book. Bird studied 
rarefied gas flow over the flat nose cylinder and presented the 
results of this simulation in his book. But, Bird didn’t compare 
the results of the external rarefied gas flow using DSMC with 
the experimental data. Crifo, et al. (2002) compared between 
Navier Stokes and Boltzmann simulation of the cicumnuclear 
coma. They considered perfect agreement between the two 
methods on the day and night sides of the coma. Chen, et al. 
(2003) extended the Boltzmann kinetic equation for turbulent 
flows. In their work, it is shown the effectiveness of the 
method with the use of a computationally efficient implemen-
tation in terms of a lattice Boltzmann equation. Wu, et al. 
(2003) used the parallel three-dimensional direct simulation 
Monte-Carlo methods for simulation of a hypersonic flow 
about a sphere. They compared their results with Dogra, et 
al.’s (1994) results. This comparison shows a good agreement 
between two results. Volkov, et al. (2005) simulated a super-
sonic multiphase gas solid flow over a blunt body. The carrier 
gas is treated as a continuum and described by the complete 
Navier Stokes equations with additional source terms model-
ing the reverse action of the dispersed phase; the dispersed 
phase is treated as a discrete set of solid particles and its be-
havior is described by a kinetic Boltzmann equation. 
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In this study, we would like to develop a scheme to simulate 
the collision equation in the Boltzmann equation with higher 
accuracy than the previous schemes available in the literature 
and apply this scheme to solve the external flow about the 
sphere. 

 
1.1 Purpose of the present work 

So far the rarefied gas dynamic problems, when the Knudsen 
number is large enough, are simulated using the first-order 
time discretization of the Boltzmann equation (Bird, 1994). 
The Boltzmann equation is split in time into a purely convec-
tive equation (collision term is zero) and a purely collision 
equation (convective term is zero). The collision equation is 
discretized in time by the first-order Euler scheme, and the 
probabilistic interpretation of the discretized equation breaks 
down when the ratio tμ εΔ is large enough (Nanbu (1980), 
Babovsky (1986) and Pareschi (2005)). However, in the pre-
sent work our goal is to develop a scheme which considers the 
effects of the truncation errors in the time discretization of the 
first-order Euler scheme for the collision equation in order to 
achieve more accurate probabilistic interpretations. To achieve 
this goal, we write the modified equation of the first-order 
Euler scheme using the Taylor expansion series and then we 
capture the higher order truncated terms. In the present work 
due to the limitation of the computing time we are limited to 
choosing only the first two terms in the Taylor expansion se-
ries. The details of the derivation of our scheme which we call 
that modified direct simulation Monte-Carlo (MDSMC) 
scheme are presented in the §2b the MDSMC scheme. 

 
1.2 Description of case study problems 

To validate our scheme we consider the external rarefied gas 
flow about a sphere as our case study problem with the data 
exactly the same as one depicted by the experiment of 
Wegener, et al. (1961). In the case study, the drag coefficient 
for a sphere in the external rarefied gas flow is simulated using 
the MDSMC and DSMC schemes and the results of the simu-
lation are compared with the experimental data of Wegener, et 
al. (1961). The diameter of the sphere is 12.7 mm (0.5 in) and 
the fluid flowing about the sphere is chosen to be air. Six dif-
ferent ambient temperatures, ambient Mach numbers and am-
bient Knudsen numbers are chosen to be the same as the ex-
perimental data of Wegener, et al. (1961). The numerical val-
ues of the temperatures, Mach numbers and Knudsen numbers 
are given in Table 1. 

The schematic diagram of our case study problem is shown 
in Fig. 1. 

 
1.3 Boundary conditions 

The sizes of calculation domain are, Lx=25.7 mm, Ly=12.7 
mm and the diameter of the sphere=12.7 mm. The number  of 
cells in X direction is 400. The number of cells in Y direction 
is 200. The total number of cells is 80000. The velo-  cities of 

flow, in Fig. 1, are 1482.37335 m/s, 1498.6708 m/s, 
1389.6773 m/s, 1420.5436 m/s, 1390.373 m/s and 1446.585 
m/s. 

 
1.4 Parameters of VHS model 

The reference of diameter of air molecules is 4.19×10-10 m. 
The reference temperature of air molecules is 273K. The vis-
cosity temperature power law is 0.746. The molecular mass of 
air molecules is 47.82×10-27 Kg. The number of rotational 
degree of freedom of air molecules is 5. 

 
2. Mathematical formulations 

2.1 The Boltzmann equation 

The Boltzmann equation is written as (Cercignani, 1988): 
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In Eq. (1), ( )f v is the nonnegative density probability distri-
bution function of molecule of class having the velocity of v , 

( )*f v  is the nonnegative density probability distribution 
function of the molecule of class having the velocity of *v , 

( )f ′v is the post-collision nonnegative density probability 
distribution function of the molecule of class having the veloc-
ity of ′v , and ( )*f ′v is the post-collision nonnegative density 
probability distribution function of the molecule of class hav-
ing the velocity of *′v  and Ω  is the angle in the spherical 
coordinates. The ( ),Q f f  is the integral collision which de-
scribes the binary collisions of the molecules. The kernel σ  
is a non-negative function which is described as (Pareschi, 
2005): 
 

( ) ( )* *, .Ω b α
ασ θ− = −v v v v  (2) 

 
Where, θ  is the scattering angle between *−v v  and 

* Ω−v v . The variable hard sphere (VHS) (Bird, 1994) 

 
 
Fig. 1. The schematic diagram of the case study in the present work. 
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model is often used in numerical simulation of rarefied gases, 
where, ( ) Cbα θ =  with C  a positive constant and 1α = . The 
value of C  is equal to (Bird, 1994), C Tσ= , where Tσ  is the 
collision cross section and is equal to 2 4dπ ⋅  
 
2.2 The MDSMC scheme  

Splitting Eq. (1), the Boltzmann equation (Gabetta, et al., 
1997), into an equation for the effect of collision, 0f⋅ ∇ ≡rv , 
and an equation for the effect of convection, ( ), 0Q f f ≡ . The 
equation for the effect of convection is written as (Pareschi, 
2005): 

 

0f f
t

∂ + ∇ =
∂ rv. .  (3) 

 
The equation for the effect of collision is written as (Pareschi, 

2005): 
 

( )1 , ,f Q f f
t ε

∂ =
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 (4) 

 
where the right hand side of Eq. (4) is called the collision term 
and is rewritten as: 
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Where, 

( ) ( )4
* * *0 T Tf d d dπμ σ Ω σ Ω+∞ +∞

−∞ −∞= − = −∫ ∫ ∫v v v v v v v
  ( ) *

4
0 f d mπ κρ=∫ v v  is the mean collision frequency for the 

molecules having velocity v , ρ  is the density of the gas, m  
is the mass of a molecule of the gas, κ is a molecular constant 

4
*T0 dπκ σ Ω= −∫ v v  and ( )* *m f dρ +∞

−∞= ∫ v v (Wild, 1951): 
 

( ) .
m
κρμ μ= =v  (6) 

 
Substituting Eq. (6) into Eq. (5) and then into Eq. (4): 
 

( ) ( )1 1, ,  f Q f f P f f f
t

μ
ε ε

∂ = = ⎡ − ⎤ ⋅⎣ ⎦∂
 (7) 

 
The first-order time discretization of Eq. (7) is written as: 
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,

1
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The probabilistic interpretation of Eq. (7) is the following. In 
order a particle is sampled from 1nf + , a particle is sampled 
from nf with probability of ( )1 tμ ε− Δ  and a particle is 
sampled from ( ),n nP f f μ  with probability of tμ εΔ . It is 
to be noted that the above probabilistic interpretation fails if 
the ratio of tμ εΔ  is too large because the coefficient of 

nf on the right hand side may become negative (Nanbu, 1980, 
Babovsky, 1986 and Pareschi, 2005). 

In our scheme, we write for 1nf + from Taylor series expan-
sion as: 
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The second-order derivative, 2 2f t∂ ∂ , in Eq. (9) is written 

as: 
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Substituting Eq. (10) for the value of 2 2f t∂ ∂  and Eq. (7) for 
the value of f t∂ ∂  into Eq. (9): 
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The ( ) ( ) ( )* * *, 4n n n

T0P f f f f d dπ σ Ω+∞
−∞ ′ ′= −∫ ∫ v v v v v  is the 

bilinear operator describing the collision effect of two 
molecules. The time derivative of ( ),n nP f f is rewritten as: 
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The time discretization of ( ),n nP f f t∂ ∂ is rewritten as: 
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Substituting for  

( ) ( ) ( )* * *, 4n n n
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into Eq. (13): 
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Substituting Eq. (14) into Eq. (11): 
 

( )

( ) ( ) ( )

( )

( )

1

1

2
1 1

2 2

2 2

3
,

,

, ,
2!

,

n n

n n
n

n n n n

n n
n

f f

P f ft f

P f f P f ft
t

P f f
f

O t

μΔ
ε μ

Δ μ
εΔ μ μ

μ μ
ε μ ε

Δ

+ =

⎡ ⎤
⎢ ⎥+ −
⎢ ⎥⎣ ⎦
⎛ ⎧ ⎫⎪ ⎪⎜+ −⎨ ⎬⎜ ⎪ ⎪⎩ ⎭⎝

⎞
⎟− +
⎟
⎠

+

           (15) 

 
where ( )1 ,n n nf P f f μ= . Rearranging and truncating terms 
of higher order than the second order in Eq. (15): 
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The probabilistic interpretation of Eq. (16) is the following. 

In order a particle is sampled from n 1f + , a particle is sampled 
from nf with probability of ( )( )22 21 2t tμΔ ε μ Δ ε− + , a 
particle is sampled from ( ),n nP f f μ  with probability of 

( )( )22 22 2t tμΔ ε μ Δ ε−  and a particle is sampled from 
( ),n n

1P f f μ with probability of 2tμΔ ε . Comparing Eq. 

(16), the new scheme (MDSMC), with Eq. (8) (the DSMC 
scheme) reveals two facts as follows: 1- Eq. (16), the new 
scheme (MDSMC), consists of three terms that are sampled 
probabilistically; however, Eq. (8) (the DSMC scheme) con-
sists of two terms that are sampled probabilistically, the third 
extra term in Eq. (16), ( ),n n

1P f f μ , is interpreted as the 
collision between the particles sampled from nf and the parti-
cles sampled from ( ),n nP f f μ . 2- The probabilistic coeffi-
cients in Eq. (16), the new scheme (MDSMC), consist of the 
second-order terms in time step; however, the probabilistic 
coefficients in Eq. (8) (the DSMC scheme) consist of the first-
order terms in the time step. 

 
3. The drag coefficient calculation 

In this paper, the drag coefficient of the sphere is calculated 
simulating the flow field using the DSMC and the MDSMC 
schemes. Then the results of the simulation are compared with 
Wegener’s experimental data for the drag coefficient of the 
sphere in the low-pressure tunnel. The drag force acting on the 
sphere is written as: 

 
2

2

drag rr
0 0

f r Cos Sin d d
π π

σ θ φ φ θ= ∫ ∫ .     (17) 

 
The drag coefficient is defined as: 
 

1 2
drag

D 2
s

f
C

V Aρ
= ,                       (18) 

 
where the sA is the cross section of the sphere, 2

s sA 4 dπ= , 
and sd  is the diameter of the sphere. 
 
4. The numerical procedures 

4.1 The DSMC scheme (the VHS collision model mole-
cules): 

• 80.5 10t SecΔ −= ×  
• Distribute the initial locations of the particles according to 

the uniform distribution. 
o Given{ }, 1, ... ,n

i i N=x  and { } , 1, ... ,n
i i N=v  

o Set 1 n
i tΔ+ = + ⋅n n

i ix x v  
• for  t totn 1 to n=  
o Given{ }, , ... ,n

i i 1 N=v . 
o Define the local Knudsen number ( )ε . 

• Compute an upper bound  
( )2 4i jdσ π⎡ ⎤= −⎣ ⎦max v v  for the cross section,  

σ  is updated in each collision. 
• Set 4μ πσ= . 
• Set ( )/(2 )cN Iround N tμ ε= Δ . 
• Select 2 cN dummy collision pairs ( ),i j uniformly among 

all possible pairs, and for those. 
• Compute the relative cross section 2 4.ij i jdσ π= −v v  
• Generate uniform random numbers Rand . 
• If ijRand σ σ<  
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 Perform the collision between i  and j , and compute the 
post-collision velocities *

iv  and *
jv  according to the 

Collisional law. 
 Generate two uniform random numbers 1 2,ξ ξ . 
 Set ( )1

1 22 1 , 2Cosα ξ β πξ−= − = . 
 Set ( )TCos Sin Sin Sin Cosφ β α β α α= . 

 Set ( )* ,i i j i j
1 1
2 2

φ= + + −v v v v v  

( )*
j i j i j

1 1
2 2

φ= + − −v v v v v . 

 Set *n 1
i i

+ =v v , 1 *n
j j

+ =v v . 
• else 

 Set 1n n
i i

+ =v v , 1n n
j j

+ =v v . 
 Set 1n n

i i
+ =v v  for the 2i cN N−  particles that have not 

been selected. 
• End for 
• Calculate macroscopic properties. 

During each step, all the other 2i cN N−  particle velocities 
remain unchanged. Here, by ( )Iround x , we denote a 
suitable integer rounding of a positive real number x. 

 
4.2 The MDSMC Scheme (the VHS collision model mole-

cules): 

• 80.5 10t SecΔ −= ×  
• Distribute the initial locations of the particles according to 

the uniform distribution. 
• Given{ } , 1, ... ,n

i i N=x  and { }, , ... ,n
i i 1 N=v  

• Set n
i tΔ= + ⋅n

i ix x vn+1  
• for t totn 1 to n=  
o Given { } , 1, ... ,n

i i N=v . 
o Define the local Knudsen number ( )ε . 
o Compute an upper bound  

( )2 4i jdσ π⎡ ⎤= −⎣ ⎦max v v  of the cross section,σ is updated 
in each collision. 
o Set 4μ πσ= . 
o Compute 

( )22

21c

tN t N tN Iround
2 2 2 4 2

μ ΔμΔ μΔ
ε ε ε

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟= + + ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠
. 

o Select 
1c2N dummy collision pairs ( ),i j  uniformly 

among all possible pairs. 
o Compute the relative cross section 2 4.ij i jdσ π= −v v  
o Generate uniform random numbers ( Rand ). 
o If ijRand σ σ<  

 Perform the collision between i  and j , and compute the 
post-collision velocities *

iv  and *
jv  according to the 

Collisional law, like the DSMC method.  

 Set
22c

N tN Iround
2

μΔ
ε

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. 

 Select 
2cN particles among those that have not collided 

and select 
2cN  particles among those that have collided. 

 Compute the relative cross section 2 4.ij i jdσ π= −v v  
 Generate uniform random numbers ( Rand ). 

o If ijRand σ σ<  
 Perform the collision between i  and j , and compute the 

post-collision velocities *
iv  and *

jv  according to the 
collisional law, like the DSMC method. 

 Set 1n n
i i

+ =v v  for all the 2
1 2c cN N N− −  particles that 

have not been selected. 
• End for 
• Calculate macroscopic properties. 
 

5. Discussion of results 

5.1 Comparisons of the results of simulations of gas flow 
about the sphere with the experiments of Wegener (1961) 

Fig. 2 shows the comparison of the results of simulation 
using the MDSMC and the DSMC schemes for the drag 
coefficients versus different Knudsen numbers with 
experimental results of Wegener, et al. (1961). The 
comparison shows that the results of simulation using the 
MDSMC scheme for the drag coefficients are closer to the 
experiment (Wegener, et al. (1961)) than the DSMC scheme. 

Fig. 3 shows the comparison of the results of simulation 
using the MDSMC and the DSMC schemes for the drag 
coefficients versus different Mach numbers with experimental 
results of Wegener, et al. (1961). The comparison shows that 
the results of simulation using the MDSMC scheme for the 
drag coefficients are closer to the experiment (Wegener, et al. 
(1961)) than the DSMC scheme. 

Figs. 4(a) and (b) show the constant density contours using 
the MDSMC and the DSMC schemes, respectively. 

Figs. 5a and 5b show the constant Mach number contours 
using the MDSMC and the DSMC schemes respectively. The 
contours of the constant Mach number using the MDSMC 
scheme are more compact than the contours of the constant 
Mach number using the DSMC scheme. 

 
 
Fig. 2. The comparison of the results of simulation using the MDSMC and 
the DSMC schemes for the drag coefficients versus different Knudsen 
numbers with experimental results of Wegener, et al. (1961). 
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Figs. 6(a) and (b) show the constant temperature contours 
using the MDSMC and the DSMC schemes respectively. The 
contours of constant temperature using the MDSMC scheme 
are smoother than the contours of constant temperature using 
the DSMC scheme in the front area of the sphere. However, 
the results of simulation for the constant temperature contours 
using the MDSMC scheme show more fluctuations in the 
wake zone of the sphere than the DSMC scheme. 

Figs. 7(a) and (b) show the constant axial velocity contours 
using the MDSMC and the DSMC schemes respectively. The 
contours of the constant axial velocity using the MDSMC 
scheme are more compact than the contours of the constant 
axial velocity using the DSMC scheme. 

 
 
Fig. 3. The comparison of the results of simulation using the MDSMC and
the DSMC schemes for the drag coefficients versus different Mach num-
bers with experimental results of Wegener, et al. (1961). 
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Fig. 4. The constant density contours using the MDSMC and the DSMC
schemes, respectively. 
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Fig. 5. The constant Mach number contours using the MDSMC and the
DSMC schemes, respectively. 
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Fig. 6. The constant Temperature contours using the MDSMC and the 
DSMC schemes respectively. 
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Fig. 7. The constant axial velocity contours using the MDSMC and the 
DSMC schemes, respectively. 
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Figs. 8(a) and (b) show the constant radial velocity contours 
using the MDSMC and the DSMC schemes, respectively. The 
contours of the constant radial velocity using the MDSMC 
scheme are more compact than the contours of the constant 
radial velocity using the DSMC scheme. 

Table 1 shows the comparison of the results of simulation 
for the drag coefficient of the sphere using the MDSMC and 
the DSMC schemes with the experimental data of Wegener, et 
al. (1961). The comparison of the results of simulation for the 
drag coefficient of the sphere using the MDSMC and the 
DSMC schemes with the experimental data of Wegener, et al. 
(1961) shows that the error of the results for the drag coeffi-
cient of the sphere using the MDSMC scheme is 60% less 
than the error of the results using the DSMC scheme. 

 
6. Conclusions 

Comparing the results of the simulation with the experimen-

tal data shows that the new scheme developed in the present 
work (the MDSMC scheme) has the capability of simulating 
the rarefied gas flow problem (flow about a sphere) with 
higher accuracy than the previous DSMC scheme. First, in the 
new scheme (MDSMC) there exists a new extra 
term ( )1 ,n nP f f μ  which takes into account the effect of the 
collision between the particles sampled from nf and the parti-
cles sampled from ( ),n nP f f μ which we call that the sec-
ond-order collision term. Second, in the new scheme 
(MDSMC) there exists a second-order term in the time step in 
the probabilistic coefficients which takes into account the 
effect of the sampling the particles with higher accuracy than 
the sampling the particles in the previous DSMC scheme. 
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